2012 - 2010


We suggest a bacteriophage genus, “Viunalikevirus”, as a new genus within the family Myoviridae. To date, this genus includes seven sequenced members: Salmonella phages ViI, SFP10 and FSH19; Escherichia phages CBA120 and PhaxI; Shigella phage phiSboM-AG3; and Dickeya phage LIMEstone1. Their shared myovirus morphology, with comparable head sizes and tail dimensions, and genome organization are considered distinguishing features. They appear to have conserved regulatory sequences, a horizontally acquired tRNA set and the probable substitution of an alternate base for thymine in the DNA. A close examination of the tail spike region in the DNA revealed four distinct tail spike proteins, an arrangement which might lead to the umbrella-like structures of the tails visible on electron micrographs. These properties set the suggested genus apart from the recently ratified subfamily Tevenvirinae, although a significant evolutionary relationship can be observed.
Archives of Virology, October 2012, Volume 157, Issue 10, pp 2035-2046
Tepovirus is a new monotypic genus of plant viruses typified by potato virus T (PVT), a virus with helically constructed filamentous particles that are 640 nm long, previously classified as unassigned species in the family Betaflexiviridae. Virions have a single-stranded positive-sense polyadenylated RNA genome that is 6.5 kb in size, and a single type of coat protein with a size of 24 kDa. The viral genome contains three slightly overlapping ORFs encoding, respectively, the replication-related proteins (ORF1), a putative movement protein of the 30 K type (ORF2) and the coat protein (ORF3). Its structure and organization (number and order of genes) resembles that of trichoviruses and of citrus leaf blotch virus (CLBV, genus Citrivirus) but has a smaller size. Besides potato, the primary host, PVT can experimentally infect herbaceous hosts by mechanical inoculation. No vector is known, and transmission is through propagating material (tubers), seeds and pollen. PVT has a number of biological, physical and molecular properties that differentiate it from betaflexiviruses with a 30K-type movement protein. It is phylogenetically distant from all these viruses, but least so from grapevine virus A (GVA), the type member of the genus Vitivirus, with which it groups in trees constructed using the sequences of all of the genes.
Archives of Virology, August 2012, Volume 157, Issue 8, pp 1629-1633
Recently, two independent surveillance studies in Côte d’Ivoire and Vietnam, respectively, led to the discovery of two mosquito-borne viruses, Cavally virus and Nam Dinh virus, with genome and proteome properties typical for viruses of the order Nidovirales. Using a state-of-the-art approach, we show that the two insect nidoviruses are (i) sufficiently different from other nidoviruses to represent a new virus family, and (ii) related to each other closely enough to be placed in the same virus species. We propose to name this new family Mesoniviridae. Meso is derived from the Greek word “mesos” (in English "in the middle") and refers to the distinctive genome size of these insect nidoviruses, which is intermediate between that of the families Arteriviridae and Coronaviridae, while ni is an abbreviation for “nido”. A taxonomic proposal to establish the new family Mesoniviridae, genus Alphamesonivirus, and species Alphamesonivirus 1 has been approved for consideration by the Executive Committee of the ICTV.
Archives of Virology, August 2012, Volume 157, Issue 8, pp 1623-1628
Linear viruses with double-stranded DNA genomes are classified into two families, Lipothrixviridae and Rudiviridae. The members of these two families, all of which infect hyperhermophilic members of the domain Archaea, differ significantly in the complexity of their virions as well as in their mechanisms of genome replication. However, recent structural and genomic studies have revealed a robust evolutionary link between members of the two families. To acknowledge this relationship we propose to unify the two families into the new taxonomic order "Ligamenvirales".
Archives of Virology, April 2012, Volume 157, Issue 4, pp 791-795


Archives of Virology, Volume 156, Number 2 / February 2011, 363 - 367
Archives of Virology, Volume 156, Number 1 / January 2011, 181 - 182
The family Totiviridae includes a number of viruses with monosegmented dsRNA genomes and isometric virions that infect either fungi or a number of medically important protozoan parasites such as Leishmania and Giardia . A new genus, Trichomonasvirus , was recently approved for this family. Its name is based on the genus of its host organism, Trichomonas vaginalis , a protozoan parasite that colonizes the human genitourinary mucosa and is the most common non-viral sexually transmitted infection in the world. The type species of this new genus is Trichomonas vaginalis virus 1 . Distinguishing characteristics of the new genus include infection of a human sexually transmitted parasite, stable mixed infection with more than one distinct Trichomonasvirus species, and sequence-based phylogenetic divergence that distinguishes it from all other family members.
Archives of Virology, Volume 156, Number 1 / January 2011, 171 - 179


The taxonomy of the family Filoviridae (marburgviruses and ebolaviruses) has changed several times since the discovery of its members, resulting in a plethora of species and virus names and abbreviations. The current taxonomy has only been partially accepted by most laboratory virologists. Confusion likely arose for several reasons: species names that consist of several words or which (should) contain diacritical marks, the current orthographic identity of species and virus names, and the similar pronunciation of several virus abbreviations in the absence of guidance for the correct use of vernacular names. To rectify this problem, we suggest (1) to retain the current species names Reston ebolavirus , Sudan ebolavirus , and Zaire ebolavirus , but to replace the name Cote d’Ivoire ebolavirus [sic] with Taï Forest ebolavirus and Lake Victoria marburgvirus with Marburg marburgvirus ; (2) to revert the virus names of the type marburgviruses and ebolaviruses to those used for decades in the field (Marburg virus instead of Lake Victoria marburgvirus and Ebola virus instead of Zaire ebolavirus); (3) to introduce names for the remaining viruses reminiscent of jargon used by laboratory virologists but nevertheless different from species names (Reston virus, Sudan virus, Taï Forest virus), and (4) to introduce distinct abbreviations for the individual viruses (RESTV for Reston virus, SUDV for Sudan virus, and TAFV for Taï Forest virus), while retaining that for Marburg virus (MARV) and reintroducing that used over decades for Ebola virus (EBOV). Paying tribute to developments in the field, we propose (a) to create a new ebolavirus species ( Bundibugyo ebolavirus ) for one member virus (Bundibugyo virus, BDBV); (b) to assign a second virus to the species Marburg marburgvirus (Ravn virus, RAVV) for better reflection of now available high-resolution phylogeny; and (c) to create a new tentative genus ( Cuevavirus ) with one tentative species ( Lloviu cuevavirus ) for the recently discovered Lloviu virus (LLOV). Furthermore, we explain the etymological derivation of individual names, their pronunciation, and their correct use, and we elaborate on demarcation criteria for each taxon and virus.
Archives of Virology, Volume 155, Number 12 / December 2010, 2083 - 2103
Archives of Virology, Volume 155, Number 11 / November 2010, 1907 - 1908
Archives of Virology, Volume 155, Number 1 / January 2010, 133 - 146
Endogenous members of the family Caulimoviridae have now been found in the genomes of many plant species. Although these sequences are usually fragmented and rearranged and show varying degrees of decay, the genomes of the ancestral viruses can often be reassembled in silico , allowing classification within the existing viral taxonomic framework. In this paper, we describe analyses of endogenous members of the family Caulimoviridae in the genomes of Oryza sativa , Nicotiana tabacum and Solanum spp. and on the basis of phylogeny, genome organization and genetic distance within the pol gene, propose two new virus genera called Orendovirus and Solendovirus. A system of nomenclature for endogenous virus sequences in plants is also proposed.
Archives of Virology, Volume 155, Number 1 / January 2010, 123 - 131
Archives of Virology, Volume 155, Number 1 / January 2010, 3 - 5
Archives of Virology, Volume 155, Number 1 / January 2010, 1 - 2