Di Serio F, Flores R, Verhoeven JT, Li SF, Pallás V, Randles JW, Sano T, Vidalakis G, Owens RA. 
Viroids are the smallest autonomous infectious nucleic acids known so far. With a small circular RNA genome of about 250-400 nt, which apparently does not code for any protein, viroids replicate and move systemically in host plants. Since the discovery of the first viroid almost forty-five years ago, many different viroids have been isolated, characterized and, frequently, identified as the causal agents of plant diseases. The first viroid classification scheme was proposed in the early 1990s and adopted by the International Committee on Taxonomy of Viruses (ICTV) a few years later. Here, the current viroid taxonomy scheme and the criteria for viroid species demarcation are discussed, highlighting the main taxonomic questions currently under consideration by the ICTV Viroid Study Group. The impact of correct taxonomic annotation of viroid sequence variants is also addressed, taking into consideration the increasing application of next-generation sequencing and bioinformatics for known and previously unrecognized viroids.
Arch Virol. 2014 Dec;159(12):3467-78. doi: 10.1007/s00705-014-2200-6. Epub 2014 Sep 13.
Adams MJ, Lefkowitz EJ, King AM, Carstens EB. 
Changes to virus taxonomy approved by a vote of all ICTV members in February-March 2014 are reported.
Arch Virol. 2014 Oct;159(10):2831-41. doi: 10.1007/s00705-014-2114-3. Epub 2014 Jun 7. PubMed PMID: 24906522.
M. J. Adams, E. B. Carstens 
Following discussions at the Executive Committee meeting of the International Committee on Taxonomy of Viruses (ICTV) in Edinburgh, UK, in July 2013, it was agreed to propose changes to the Statutes to allow the appointment of a third Secretary, with particular responsibility for virus data. These changes have now been formally adopted, following approval by the ICTV voting membership (in a ballot conducted by e-mail) and by IUMS Virology Division, as required by the Statutes.
Arch Virol. 2014 Oct;159(10):2829-30. doi: 10.1007/s00705-014-2145-9. Epub 2014 Jun 7. PubMed PMID: 24906527.
Varsani A, Navas-Castillo J, Moriones E, Hernández-Zepeda C, Idris A, Brown JK, Murilo Zerbini F, Martin DP. 
The family Geminiviridae includes plant-infecting circular single-stranded DNA viruses that have geminate particle morphology. Members of this family infect both monocotyledonous and dicotyledonous plants and have a nearly global distribution. With the advent of new molecular tools and low-cost sequencing, there has been a significant increase in the discovery of new geminiviruses in various cultivated and non-cultivated plants. In this communication, we highlight the establishment of three new genera (Becurtovirus, Eragrovirus and Turncurtovirus) to accommodate various recently discovered geminiviruses that are highly divergent and, in some cases, have unique genome architectures. The genus Becurtovirus has two viral species, Beet curly top Iran virus (28 isolates; leafhopper vector Circulifer haematoceps) and Spinach curly top Arizona virus (1 isolate; unknown vector), whereas the genera Eragrovirus and Turncurtovirus each have a single assigned species: Eragrostis curvula streak virus (6 isolates; unknown vector) and Turnip curly top virus (20 isolates; leafhopper vector Circulifer haematoceps), respectively. Based on analysis of all of the genome sequences available in public databases for each of the three new genera, we provide guidelines and protocols for species and strain classification within these three new genera.
Arch Virol. 2014 Aug;159(8):2193-203. doi: 10.1007/s00705-014-2050-2. Epub 2014 Mar 22.
Calisher CH, Tesh RB. 
Arch Virol. 2014 Aug;159(8):2189-91. doi: 10.1007/s00705-014-2008-4. Epub 2014 Feb 18.
Varsani A, Martin DP, Navas-Castillo J, Moriones E, Hernández-Zepeda C, Idris A, Murilo Zerbini F, Brown JK. 
Members of the genus Curtovirus (family Geminiviridae) are important pathogens of many wild and cultivated plant species. Until recently, relatively few full curtovirus genomes have been characterised. However, with the 19 full genome sequences now available in public databases, we revisit the proposed curtovirus species and strain classification criteria. Using pairwise identities coupled with phylogenetic evidence, revised species and strain demarcation guidelines have been instituted. Specifically, we have established 77 % genome-wide pairwise identity as a species demarcation threshold and 94 % genome-wide pairwise identity as a strain demarcation threshold. Hence, whereas curtovirus sequences with >77 % genome-wide pairwise identity would be classified as belonging to the same species, those sharing >94 % identity would be classified as belonging to the same strain. We provide step-by-step guidelines to facilitate the classification of newly discovered curtovirus full genome sequences and a set of defined criteria for naming new species and strains. The revision yields three curtovirus species: Beet curly top virus (BCTV), Spinach severe curly top virus (SpSCTV) and Horseradish curly top virus (HrCTV).
Arch Virol. 2014 Jul;159(7):1873-82. doi: 10.1007/s00705-014-1982-x. Epub 2014 Jan 25. PMID: 24463952
Pawlowski A, Rissanen I, Bamford JK, Krupovic M, Jalasvuori M. 
A new family of viruses named Sphaerolipoviridae has been proposed recently. It comprises icosahedral, tailless haloarchaeal viruses with an internal lipid membrane located between the protein capsid and the dsDNA genome. The proposed family Sphaerolipoviridae was divided into two genera: Alphasphaerolipovirus, including Haloarcula hispanica viruses SH1, PH1 and HHIV-2, and Betasphaerolipovirus, including Natrinema virus SNJ1. Here, we propose to expand the family Sphaerolipoviridae to include a group of bacteriophages infecting extreme thermophilic Thermus thermophilus and sharing a number of structural and genomic properties with archaeal sphaerolipoviruses. This new group comprises two members, lytic phage P23-77 and temperate phage IN93, as well as putative members P23-72 and P23-65H. In addition, several related proviruses have been discovered as integrated elements in bacterial genomes of the families Thermus and Meiothermus. Morphology of the virus particles and the overall capsid architecture of these bacteriophages resembles that of archaeal members of the Sphaerolipoviridae, including an unusual capsid arrangement in a T = 28 dextro lattice. Alpha- and betasphaerolipoviruses share with P23-77-like bacteriophages a conserved block of core genes that encode a putative genome-packaging ATPase and the two major capsid proteins (MCPs). The recently determined X-ray structure of the small and large MCPs of P23-77 revealed a single beta-barrel (jelly-roll) fold that is superimposable with the cryo-EM density maps of the SH1 capsomers. Given the common features of these viruses, we propose to include the so far unclassified P23-77-like bacteriophages into a new genus, "Gammasphaerolipovirus", within the family Sphaerolipoviridae.
Arch Virol. 2014 Jun;159(6):1541-54. doi: 10.1007/s00705-013-1970-6. Epub 2014 Jan 7. PMID: 24395078
Kuhn JH, Bào Y, Bavari S, Becker S, Bradfute S, Brauburger K, Rodney Brister J, Bukreyev AA, Caì Y, Chandran K, Davey RA, Dolnik O, Dye JM, Enterlein S, Gonzalez JP, Formenty P, Freiberg AN, Hensley LE, Hoenen T, Honko AN, Ignatyev GM, Jahrling PB, Johnson KM, Klenk HD, Kobinger G, Lackemeyer MG, Leroy EM, Lever MS, Mühlberger E, Netesov SV, Olinger GG, Palacios G, Patterson JL, Paweska JT, Pitt L, Radoshitzky SR, Ryabchikova EI, Saphire EO, Shestopalov AM, Smither SJ, Sullivan NJ, Swanepoel R, Takada A, Towner JS, van der Groen G, Volchkov VE, Volchkova VA, Wahl-Jensen V, Warren TK, Warfield KL, Weidmann M, Nichol ST. 
Specific alterations (mutations, deletions, insertions) of virus genomes are crucial for the functional characterization of their regulatory elements and their expression products, as well as a prerequisite for the creation of attenuated viruses that could serve as vaccine candidates. Virus genome tailoring can be performed either by using traditionally cloned genomes as starting materials, followed by site-directed mutagenesis, or by de novo synthesis of modified virus genomes or parts thereof. A systematic nomenclature for such recombinant viruses is necessary to set them apart from wild-type and laboratory-adapted viruses, and to improve communication and collaborations among researchers who may want to use recombinant viruses or create novel viruses based on them. A large group of filovirus experts has recently proposed nomenclatures for natural and laboratory animal-adapted filoviruses that aim to simplify the retrieval of sequence data from electronic databases. Here, this work is extended to include nomenclature for filoviruses obtained in the laboratory via reverse genetics systems. The previously developed template for natural filovirus genetic variant naming, (/)///-, is retained, but we propose to adapt the type of information added to each field for cDNA clone-derived filoviruses. For instance, the full-length designation of an Ebola virus Kikwit variant rescued from a plasmid developed at the US Centers for Disease Control and Prevention could be akin to "Ebola virus H.sapiens-rec/COD/1995/Kikwit-abc1" (with the suffix "rec" identifying the recombinant nature of the virus and "abc1" being a placeholder for any meaningful isolate designator). Such a full-length designation should be used in databases and the methods section of publications. Shortened designations (such as "EBOV H.sap/COD/95/Kik-abc1") and abbreviations (such as "EBOV/Kik-abc1") could be used in the remainder of the text, depending on how critical it is to convey information contained in the full-length name. "EBOV" would suffice if only one EBOV strain/variant/isolate is addressed.
Arch Virol. 2014 May;159(5):1229-37. doi: 10.1007/s00705-013-1877-2. Epub 2013 Nov 5. PMID: 24190508
Cotmore SF, Agbandje-McKenna M, Chiorini JA, Mukha DV, Pintel DJ, Qiu J, Soderlund-Venermo M, Tattersall P, Tijssen P, Gatherer D, Davison AJ. 
A set of proposals to rationalize and extend the taxonomy of the family Parvoviridae is currently under review by the International Committee on Taxonomy of Viruses (ICTV). Viruses in this family infect a wide range of hosts, as reflected by the longstanding division into two subfamilies: the Parvovirinae, which contains viruses that infect vertebrate hosts, and the Densovirinae, encompassing viruses that infect arthropod hosts. Using a modified definition for classification into the family that no longer demands isolation as long as the biological context is strong, but does require a near-complete DNA sequence, 134 new viruses and virus variants were identified. The proposals introduce new species and genera into both subfamilies, resolve one misclassified species, and improve taxonomic clarity by employing a series of systematic changes. These include identifying a precise level of sequence similarity required for viruses to belong to the same genus and decreasing the level of sequence similarity required for viruses to belong to the same species. These steps will facilitate recognition of the major phylogenetic branches within genera and eliminate the confusion caused by the near-identity of species and viruses. Changes to taxon nomenclature will establish numbered, non-Latinized binomial names for species, indicating genus affiliation and host range rather than recapitulating virus names. Also, affixes will be included in the names of genera to clarify subfamily affiliation and reduce the ambiguity that results from the vernacular use of "parvovirus" and "densovirus" to denote multiple taxon levels.
Arch Virol. 2014 May;159(5):1239-47. doi: 10.1007/s00705-013-1914-1. Epub 2013 Nov 9. PMID: 24212889
Bukreyev AA, Chandran K, Dolnik O, Dye JM, Ebihara H, Leroy EM, Mühlberger E, Netesov SV, Patterson JL, Paweska JT, Saphire EO, Smither SJ, Takada A, Towner JS, Volchkov VE, Warren TK, Kuhn JH.
The International Committee on Taxonomy of Viruses (ICTV) Filoviridae Study Group prepares proposals on the classification and nomenclature of filoviruses to reflect current knowledge or to correct disagreements with the International Code of Virus Classification and Nomenclature (ICVCN). In recent years, filovirus taxonomy has been corrected and updated, but parts of it remain controversial, and several topics remain to be debated. This article summarizes the decisions and discussion of the currently acting ICTV Filoviridae Study Group since its inauguration in January 2012. 
Archives of Virology, 2014 Apr;159(4):821-30. doi: 10.1007/s00705-013-1834-0. Epub 2013 Oct 13. PMID 24122154
Dietzgen RG, Kuhn JH, Clawson AN, Freitas-Astúa J, Goodin MM, Kitajima EW, Kondo H, Wetzel T, Whitfield AE.
Orchid fleck virus (OFV) is an unassigned negative-sense, single-stranded (-)ssRNA plant virus that was previously suggested to be included in the family Rhabdoviridae, order Mononegavirales. Although OFV shares some biological characteristics, including nuclear cytopathological effects, gene order, and sequence similarities, with nucleorhabdoviruses, its taxonomic status is unclear because unlike all mononegaviruses, OFV has a segmented genome and its particles are not enveloped. This article analyses the available biological, physico-chemical, and nucleotide sequence evidence that seems to indicate that OFV and several other Brevipalpus mite-transmitted short bacilliform (-)ssRNA viruses are likely related and may be classified taxonomically in novel species in a new free-floating genus dichorhavirus. 
Archives of Virology, 2014 Mar;159(3):607-19. doi: 10.1007/s00705-013-1834-0. Epub 2013 Oct 1. PMID 24081823
Gutiérrez D, Adriaenssens EM, Martínez B, Rodríguez A, Lavigne R, Kropinski AM, García P.
To date, most members of the Siphoviridae family of bacteriophages remain unclassified, including the 46 staphylococcal phages for which the complete genome sequences have been deposited in public databases. Comparative nucleotide and protein sequence analysis, in addition to available data on phage morphology, allowed us to propose three new phage genera within the family Siphoviridae: "3alikevirus", "77likevirus" and "Phietalikevirus", which include related phages infecting Staphylococcus aureus and Staphylococcus epidermidis. However, six phages infecting S. aureus, Staphylococcus pasteuri, Staphylococcus hominis and Staphylococcus capitis strains remain to be classified (orphan phages). Overall, the former phages share morphological features and genome organization. The three groups have conserved domains containing peptidoglycan hydrolytic activities clearly identified as part of tape measure proteins ("3alikevirus" and "77likevirus") or as individual virionassociated proteins ("Phietalikevirus"). In addition, bacteriophages belonging to the genus "3alikevirus" share closely related DNA-processing and packaging proteins, while bacteriophages included in the genus "Phietalikevirus" encode specific tail proteins for host interaction. These properties are considered distinctive for these genera. Orphan phages seem to have a more divergent organization, but they share some properties with members of these proposed genera. 
Archives of Virology, 2014 Feb;159(2):389-98.. PMID 24022640.
Javed MA, Ackermann HW, Azeredo J, Carvalho CM, Connerton I, Evoy S, Hammerl JA, Hertwig S, Lavigne R, Singh A, Szymanski CM, Timms A, Kropinski AM.
Most Campylobacter bacteriophages isolated to date have long contractile tails and belong to the family Myoviridae. Based on their morphology, genome size and endonuclease restriction profile, Campylobacter phages were originally divided into three groups. The recent genome sequencing of seven virulent campylophages reveal further details of the relationships between these phages at the genome organization level. This article details the morphological and genomic features among the campylophages, investigates their taxonomic position, and proposes the creation of two new genera, the "Cp220likevirus" and "Cp8unalikevirus" within a proposed subfamily, the "Eucampyvirinae" 
Archives of Virology, 2014 Jan;159(1):181-90. doi: 10.1007/s00705-013-1788-2. Epub 2013 Jul 24. PMID 23881082.
Archives of Virology, January 2014, Volume 159, Issue 1, pp 175-180. PMID 23836392