References: Secoviridae


References: Secoviridae

Amari, K., Lerich, A., Schmitt-Keichinger, C., Dolja, V. V. & Ritzenthaler, C. (2011). Tubule-guided cell-to-cell movement of a plant virus requires class XI myosin motors. PLoS Pathog 7, e1002327. [PubMed]

Batuman, O., Kuo, Y. W., Palmieri, M., Rojas, M. R. & Gilbertson, R. L. (2010). Tomato chocolate spot virus, a member of a new torradovirus species that causes a necrosis-associated disease of tomato in Guatemala. Arch Virol 155, 857-869. [PubMed]

Bockelman, D. L., Claflin, L. E. & Uyemoto, J. K. (1982). Host Range and Seed-Transmission Studies of Maize Chlorotic Mottle Virus in Grasses and Corn. Plant Dis 66, 216-218.

Carette, J. E., van Lent, J., MacFarlane, S. A., Wellink, J. & van Kammen, A. (2002). Cowpea mosaic virus 32- and 60-kilodalton replication proteins target and change the morphology of endoplasmic reticulum membranes. J Virol 76, 6293-6301. [PubMed]

Carrier, K., Hans, F. & Sanfacon, H. (1999). Mutagenesis of amino acids at two tomato ringspot nepovirus cleavage sites: effect on proteolytic processing in cis and in trans by the 3C-like protease. Virology 258, 161-175. [PubMed]

Carrier, K., Xiang, Y. & Sanfacon, H. (2001). Genomic organization of RNA2 of Tomato ringspot virus: processing at a third cleavage site in the N-terminal region of the polyprotein in vitro. J Gen Virol 82, 1785-1790. [PubMed]

Carvalho, C. M., Wellink, J., Ribeiro, S. G., Goldbach, R. W. & Van Lent, J. W. (2003). The C-terminal region of the movement protein of Cowpea mosaic virus is involved in binding to the large but not to the small coat protein. J Gen Virol 84, 2271-2277. [PubMed]

Chandrasekar, V. & Johnson, J. E. (1998). The structure of tobacco ringspot virus: a link in the evolution of icosahedral capsids in the picornavirus superfamily. Structure 6, 157-171. [PubMed]

Chaouch, R., Redinbaugh, M. G., Marrakchi, M. & Hogenhout, S. A. (2004). Genomics of the Severe Isolate of Maize Chlorotic Dwarf Virus. Plant Protection Science 40, 113-119.

Chay, C. A., Guan, X. & Bruening, G. (1997). Formation of circular satellite tobacco ringspot virus RNA in protoplasts transiently expressing the linear RNA. Virology 239, 413-425. [PubMed]

Chen, Z. G., Stauffacher, C., Li, Y., Schmidt, T., Bomu, W., Kamer, G., Shanks, M., Lomonossoff, G. & Johnson, J. E. (1989). Protein-RNA interactions in an icosahedral virus at 3.0 Å resolution. Science 245, 154-159. [PubMed]

Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. (2011). ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27, 1164-1165. [PubMed]

De Souza, J., Muller, G., Perez, W., Cuellar, W. & Kreuze, J. (2016). Complete sequence and variability of a new subgroup B nepovirus infecting potato in central Peru. Arch Virol. [PubMed]

Di Tommaso, P., Moretti, S., Xenarios, I., Orobitg, M., Montanyola, A., Chang, J. M., Taly, J. F. & Notredame, C. (2011). T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res 39, W13-17. [PubMed]

Dimmic, M. W., Rest, J. S., Mindell, D. P. & Goldstein, R. A. (2002). rtREV: an amino acid substitution matrix for inference of retrovirus and reverse transcriptase phylogeny. J Mol Evol 55, 65-73. [PubMed]

Feldstein, P. A., Levy, L., Randles, J. W. & Owens, R. A. (1997). Synthesis and two-dimensional electrophoretic analysis of mixed populations of circular and linear RNAs. Nucleic Acids Res 25, 4850-4854. [PubMed]

Ferriol, I., Silva Junior, D. M., Nigg, J. C., Zamora-Macorra, E. J. & Falk, B. W. (2016). Identification of the cleavage sites of the RNA2-encoded polyproteins for two members of the genus Torradovirus by N-terminal sequencing of the virion capsid proteins. Virology 498, 109-115. [PubMed]

Firth, A. E. & Atkins, J. F. (2008). Bioinformatic analysis suggests that a conserved ORF in the waikaviruses encodes an overlapping gene. Arch Virol 153, 1379-1383. [PubMed]

Fuchs, M., Schmitt-Keichinger, C. & Sanfacon, H. (2016). A Renaissance in Nepovirus Research Provides New Insights Into Their Molecular Interface With Hosts and Vectors. Adv Virus Res In press.

Gaire, F., Schmitt, C., Stussi-Garaud, C., Pinck, L. & Ritzenthaler, C. (1999). Protein 2A of grapevine fanleaf nepovirus is implicated in RNA2 replication and colocalizes to the replication site. Virology 264, 25-36. [PubMed]

Ghoshal, B. & Sanfacon, H. (2015). Symptom recovery in virus-infected plants: Revisiting the role of RNA silencing mechanisms. Virology 479-480, 167-179. [PubMed]

Gorbalenya, A. E., Donchenko, A. P., Blinov, V. M. & Koonin, E. V. (1989). Cysteine proteases of positive strand RNA viruses and chymotrypsin-like serine proteases. A distinct protein superfamily with a common structural fold. FEBS Lett 243, 103-114. [PubMed]

Gottula, J., Lapato, D., Cantilina, K., Saito, S., Bartlett, B. & Fuchs, M. (2013). Genetic variability, evolution, and biological effects of Grapevine fanleaf virus satellite RNAs. Phytopathology 103, 1180-1187. [PubMed]

Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W. & Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59, 307-321. [PubMed]

Hansen, A. J., Nyland, G., Mcelroy, F. D. & Stacesmi, R. (1974). Origin, Cause, Host Range and Spread of Cherry Rasp Leaf Disease in North-America. Phytopathology 64, 721-727.

Hayashi, E. A., Blawid, R., de Melo, F. L., Andrade, M. S., Pio-Ribeiro, G., de Andrade, G. P. & Nagata, T. (2016). Complete genome sequence of a putative new secovirus infecting yam (Dioscorea) plants. Arch Virol. [PubMed]

Hibino, H. (1983). Transmission of 2 Rice Tungro-Associated Viruses and Rice Waika Virus from Doubly or Singly Infected Source Plants by Leafhopper Vectors. Plant Dis 67, 774-777.

Ho, T. & Tzanetakis, I. E. (2014). Development of a virus detection and discovery pipeline using next generation sequencing. Virology 471-473, 54-60. [PubMed]

Isogai, M., Watanabe, K., Uchidate, Y. & Yoshikawa, N. (2006). Protein-protein- and protein-RNA-binding properties of the movement protein and VP25 coat protein of Apple latent spherical virus. Virology 352, 178-187. [PubMed]

Jones, R. A. C. (1982). Tests for transmission of four potato viruses through potato true seed. Ann Appl Biol 100, 315-320.

Lai-Kee-Him, J., Schellenberger, P., Dumas, C., Richard, E., Trapani, S., Komar, V., Demangeat, G., Ritzenthaler, C. & Bron, P. (2013). The backbone model of the Arabis mosaic virus reveals new insights into functional domains of Nepovirus capsid. Journal of structural biology 182, 1-9. [PubMed]

Laporte, C., Vetter, G., Loudes, A. M., Robinson, D. G., Hillmer, S., Stussi-Garaud, C. & Ritzenthaler, C. (2003). Involvement of the secretory pathway and the cytoskeleton in intracellular targeting and tubule assembly of Grapevine fanleaf virus movement protein in tobacco BY-2 cells. Plant Cell 15, 2058-2075. [PubMed]

Larsen, R. C., Duffus, J. E. & Liu, H. Y. (1984). Tomato Necrotic Dwarf - a New Type of Whitefly-Transmitted Virus. Phytopathology 74, 795-795.

Lecoq, H., Verdin, E., Tepfer, M., Wipf-Scheibel, C., Millot, P., Dafalla, G. & Desbiez, C. (2016). Characterization and occurrence of squash chlorotic leaf spot virus, a tentative new torradovirus infecting cucurbits in Sudan. Arch Virol 161, 1651-1655. [PubMed]

Lin, J., Guo, J., Finer, J., Dorrance, A. E., Redinbaugh, M. G. & Qu, F. (2014). The bean pod mottle virus RNA2-encoded 58-kilodalton protein P58 is required in cis for RNA2 accumulation. J Virol 88, 3213-3222. [PubMed]

Lin, T., Clark, A. J., Chen, Z., Shanks, M., Dai, J. B., Li, Y., Schmidt, T., Oxelfelt, P., Lomonossoff, G. P. & Johnson, J. E. (2000). Structural fingerprinting: subgrouping of comoviruses by structural studies of red clover mottle virus to 2.4-A resolution and comparisons with other comoviruses. J Virol 74, 493-504. [PubMed]

Liu, C., Ye, L., Lang, G., Zhang, C., Hong, J. & Zhou, X. (2011). The VP37 protein of Broad bean wilt virus 2 induces tubule-like structures in both plant and insect cells. Virus research 155, 42-47. [PubMed]

Margis, R. & Pinck, L. (1992). Effects of site-directed mutagenesis on the presumed catalytic triad and substrate-binding pocket of grapevine fanleaf nepovirus 24-kDa proteinase. Virology 190, 884-888. [PubMed]

Menzel, W. & Vetten, H. J. (2008). Complete nucleotide sequence of an isolate of the Anthriscus strain of Parsnip yellow fleck virus. Arch Virol 153, 2173-2175. [PubMed]

Milne, I., Lindner, D., Bayer, M., Husmeier, D., McGuire, G., Marshall, D. F. & Wright, F. (2009). TOPALi v2: a rich graphical interface for evolutionary analyses of multiple alignments on HPC clusters and multi-core desktops. Bioinformatics 25, 126-127. [PubMed]

Murant, A. F. & Gould, R. A. (1968). Purification, properties and transmission of parsnip yellow fleck, a semi-persistent, aphid-borne virus. Ann Appl Biol 62, 123-137.

Murant, A. F., Hemida, S. K. & Mayo, M. A. (1987). In Abstracts, 7th International Congress of Virology, p. 183. Edmonton, Canada.

Murant, A. F., Roberts, I. M. & Hutcheson, A. M. (1975). Effects of Parsnip Yellow Fleck Virus on Plant-Cells. J Gen Virol 26, 277-285.

Nakamura, K., Yamagishi, N., Isogai, M., Komori, S., Ito, T. & Yoshikawa, N. (2011). Seed and pollen transmission of Apple latent spherical virus in apple. J Gen Plant Pathol 77, 48-53.

Nyland, G., Lownsbery, B. F., Lowe, S. K. & Mitchel, J. F. (1969). The transmission of Cherry rasp leaf virus by Xiphinema americanum. Phytopathology 59, 1111-1112.

Peters, S. A., Voorhorst, W. G., Wery, J., Wellink, J. & van Kammen, A. (1992). A regulatory role for the 32K protein in proteolytic processing of cowpea mosaic virus polyproteins. Virology 191, 81-89. [PubMed]

Petrzik, K. & Koloniuk, I. (2010). Emerging viruses in the genus Comovirus. Virus Genes 40, 290-292. [PubMed]

Petrzik, K., Pribylova, J., Spak, J. & Havelka, J. (2015). Partial genome sequence of currant latent virus, a new chera-like virus related to Apple latent spherical virus. J Gen Plant Pathol

 81, 142-145.

Pouwels, J., van der Velden, T., Willemse, J., Borst, J. W., van Lent, J., Bisseling, T. & Wellink, J. (2004). Studies on the origin and structure of tubules made by the movement protein of Cowpea mosaic virus. J Gen Virol 85, 3787-3796. [PubMed]

Reddick, B. B., Habera, L. F. & Law, M. D. (1997). Nucleotide sequence and taxonomy of maize chlorotic dwarf virus within the family Sequiviridae. J Gen Virol 78 ( Pt 5), 1165-1174. [PubMed]

Rozado-Aguirre, Z., Adams, I., Collins, L., Fox, A., Dickinson, M. & Boonham, N. (2016). Detection and transmission of Carrot torrado virus, a novel putative member of the Torradovirus genus. J Virol Methods 235, 119-124. [PubMed]

Sanfacon, H. (2012). Investigating the role of viral integral membrane proteins in promoting the assembly of nepovirus and comovirus replication factories. Frontiers in plant science 3, 313. [PubMed]

Sanfacon, H., Wellink, J., Le Gall, O., Karasev, A., van der Vlugt, R. & Wetzel, T. (2009). Secoviridae: a proposed family of plant viruses within the order Picornavirales that combines the families Sequiviridae and Comoviridae, the unassigned genera Cheravirus and Sadwavirus, and the proposed genus Torradovirus. Arch Virol 154, 899-907. [PubMed]

Schellenberger, P., Sauter, C., Lorber, B., Bron, P., Trapani, S., Bergdoll, M., Marmonier, A., Schmitt-Keichinger, C., Lemaire, O., Demangeat, G. & Ritzenthaler, C. (2011). Structural insights into viral determinants of nematode mediated Grapevine fanleaf virus transmission. PLoS Pathog 7, e1002034. [PubMed]

Sorrentino, R., De Stradis, A., Russo, M., Alioto, D. & Rubino, L. (2013). Characterization of a putative novel nepovirus from Aeonium sp. Virus research 177, 217-221. [PubMed]

Susi, P. (2004). Black currant reversion virus, a mite-transmitted nepovirus. Mol Plant Pathol 5, 167-173. [PubMed]

Thole, V. & Hull, R. (1996). Rice tungro spherical virus: nucleotide sequence of the 3ʹgenomic half and studies on the two small 3ʹ open reading frames. Virus Genes 13, 239-246. [PubMed]

Thole, V. & Hull, R. (1998). Rice tungro spherical virus polyprotein processing: identification of a virus-encoded protease and mutational analysis of putative cleavage sites. Virology 247, 106-114. [PubMed]

Thompson, J. R., Kamath, N. & Perry, K. L. (2014). An evolutionary analysis of the Secoviridae family of viruses. PloS one 9, e106305. [PubMed]

Turnbull-Ross, A. D., Reavy, B., Mayo, M. A. & Murant, A. F. (1992). The nucleotide sequence of parsnip yellow fleck virus: a plant picorna-like virus. J Gen Virol 73 ( Pt 12), 3203-3211. [PubMed]

van der Vlugt, R. A., Verbeek, M., Dullemans, A. M., Wintermantel, W. M., Cuellar, W. J., Fox, A. & Thompson, J. R. (2015). Torradoviruses. Annu Rev Phytopathol 53, 485-512. [PubMed]

Verbeek, M., Dullemans, A., van den Heuvel, H., Maris, P. & van der Vlugt, R. (2010). Tomato chocolate virus: a new plant virus infecting tomato and a proposed member of the genus Torradovirus. Arch Virol 155, 751-755. [PubMed]

Walker, M., Chisholm, J., Wei, T., Ghoshal, B., Saeed, H., Rott, M. & Sanfacon, H. (2015). Complete genome sequence of three tomato ringspot virus isolates: evidence for reassortment and recombination. Arch Virol 160, 543-547. [PubMed]

Wang, A. & Sanfacon, H. (2000). Proteolytic processing at a novel cleavage site in the N-terminal region of the tomato ringspot nepovirus RNA-1-encoded polyprotein in vitro. J Gen Virol 81, 2771-2781. [PubMed]

Wellink, J. & van Kammen, A. (1988). Proteases involved in the processing of viral polyproteins. Brief review. Arch Virol 98, 1-26. [PubMed]

Wellink, J. & Van Kammen, A. (1989). Cell-to-Cell Transport of Cowpea Mosaic-Virus Requires Both the 58k/48k Proteins and the Capsid Proteins.  70, 2279-2286.

Wetzel, T., Chisholm, J., Bassler, A. & Sanfacon, H. (2008). Characterization of proteinase cleavage sites in the N-terminal region of the RNA1-encoded polyprotein from Arabis mosaic virus (subgroup A nepovirus). Virology 375, 159-169. [PubMed]

Yaegashi, H., Yamatsuta, T., Takahashi, T., Li, C., Isogai, M., Kobori, T., Ohki, S. & Yoshikawa, N. (2007). Characterization of virus-induced gene silencing in tobacco plants infected with apple latent spherical virus. Arch Virol 152, 1839-1849. [PubMed]

Yoshikawa, N., Okada, K., Asamuma, K., Watanabe, K., Igarasi, A., Li, C. & Isogai, M. (2006). A movement protein and three capsid proteins are all necessary for the cell-to-cell movement of apple latent spherical cheravirus. Arch Virol 151, 837-848. [PubMed]

Zhang, G. & Sanfacon, H. (2006). Characterization of membrane association domains within the Tomato ringspot nepovirus X2 protein, an endoplasmic reticulum-targeted polytopic membrane protein. J Virol 80, 10847-10857. [PubMed]