References: Filoviridae


References: Filoviridae

Albariño, C. G., Uebelhoer, L. S., Vincent, J. P., Khristova, M. L., Chakrabarti, A. K., McElroy, A., Nichol, S. T. & Towner, J. S. (2013). Development of a reverse genetics system to generate recombinant Marburg virus derived from a bat isolate. Virology 446, 230-237. [PubMed]

Albariño, C. G., Wiggleton Guerrero, L., Jenks, H. M., Chakrabarti, A. K., Ksiazek, T. G., Rollin, P. E. & Nichol, S. T. (2017). Insights into Reston virus spillovers and adaption from virus whole genome sequences. PLoS One 12, e0178224. [PubMed]

Aleksandrowicz, P., Marzi, A., Biedenkopf, N., Beimforde, N., Becker, S., Hoenen, T., Feldmann, H. & Schnittler, H.-J. (2011). Ebola virus enters host cells by macropinocytosis and clathrin-mediated endocytosis. J Infect Dis 204 Suppl 3, S957-967. [PubMed]

Amman, B. R., Carroll, S. A., Reed, Z. D., Sealy, T. K., Balinandi, S., Swanepoel, R., Kemp, A., Erickson, B. R., Comer, J. A., Campbell, S., Cannon, D. L., Khristova, M. L., Atimnedi, P., Paddock, C. D., Crockett, R. J., Flietstra, T. D., Warfield, K. L., Unfer, R., Katongole-Mbidde, E., Downing, R., Tappero, J. W., Zaki, S. R., Rollin, P. E., Ksiazek, T. G., Nichol, S. T. & Towner, J. S. (2012). Seasonal pulses of Marburg virus circulation in juvenile Rousettus aegyptiacus bats coincide with periods of increased risk of human infection. PLoS Pathog 8, e1002877. [PubMed]

Amman, B. R., Nyakarahuka, L., McElroy, A. K., Dodd, K. A., Sealy, T. K., Schuh, A. J., Shoemaker, T. R., Balinandi, S., Atimnedi, P., Kaboyo, W., Nichol, S. T. & Towner, J. S. (2014). Marburgvirus resurgence in Kitaka Mine bat population after extermination attempts, Uganda. Emerg Infect Dis 20, 1761-1764. [PubMed]

Amman, B. R., Swanepoel, R., Nichol, S. T. & Towner, J. S. (2017). Ecology of filoviruses. Curr Top Microbiol Immunol 411, 23-61. [PubMed]

Bale, S., Julien, J.-P., Bornholdt, Z. A., Kimberlin, C. R., Halfmann, P., Zandonatti, M. A., Kunert, J., Kroon, G. J. A., Kawaoka, Y., MacRae, I. J., Wilson, I. A. & Saphire, E. O. (2012). Marburg virus VP35 can both fully coat the backbone and cap the ends of dsRNA for interferon antagonism. PLoS Pathog 8, e1002916. [PubMed]

Bamberg, S., Kolesnikova, L., Möller, P., Klenk, H.-D. & Becker, S. (2005). VP24 of Marburg virus influences formation of infectious particles. J Virol 79, 13421-13433. [PubMed]

Banadyga, L., Hoenen, T., Ambroggio, X., Dunham, E., Groseth, A. & Ebihara, H. (2017). Ebola virus VP24 interacts with NP to facilitate nucleocapsid assembly and genome packaging. Sci Rep 7, 7698. [PubMed]

Bào, Y., Amarasinghe, G. K., Basler, C. F., Bavari, S., Bukreyev, A., Chandran, K., Dolnik, O., Dye, J. M., Ebihara, H., Formenty, P., Hewson, R., Kobinger, G., Leroy, E., Mühlberger, E., Netesov, S. V., Patterson, J. L., Paweska, J. T., Smither, S. J., Takada, A., Towner, J. S., Volchkov, V. E., Wahl-Jensen, V. & Kuhn, J. H. (2017). Implementation of objective PASC-derived taxon demarcation criteria for official classification of filoviruses. Viruses 9, 106. [PubMed]

Barrientos, L. G., Martin, A. M., Rollin, P. E. & Sanchez, A. (2004). Disulfide bond assignment of the Ebola virus secreted glycoprotein SGP. Biochem Biophys Res Commun 323, 696-702. [PubMed]

Basler, C. F., Mikulasova, A., Martinez-Sobrido, L., Paragas, J., Mühlberger, E., Bray, M., Klenk, H.-D., Palese, P. & García-Sastre, A. (2003). The Ebola virus VP35 protein inhibits activation of interferon regulatory factor 3. J Virol 77, 7945-7956. [PubMed]

Basler, C. F., Wang, X., Mühlberger, E., Volchkov, V., Paragas, J., Klenk, H.-D., García-Sastre, A. & Palese, P. (2000). The Ebola virus VP35 protein functions as a type I IFN antagonist. Proc Natl Acad Sci U S A 97, 12289-12294. [PubMed]

Bavari, S., Bosio, C. M., Wiegand, E., Ruthel, G., Will, A. B., Geisbert, T. W., Hevey, M., Schmaljohn, C., Schmaljohn, A. & Aman, M. J. (2002). Lipid raft microdomains: a gateway for compartmentalized trafficking of Ebola and Marburg viruses. J Exp Med 195, 593-602. [PubMed]

Baz-Martínez, M., El Motiam, A., Ruibal, P., Condezo, G. N., de la Cruz-Herrera, C. F., Lang, V., Collado, M., San Martín, C., Rodríguez, M. S., Muñoz-Fontela, C. & Rivas, C. (2016). Regulation of Ebola virus VP40 matrix protein by SUMO. Sci Rep 6, 37258. [PubMed]

Becker, S., Huppertz, S., Klenk, H.-D. & Feldmann, H. (1994). The nucleoprotein of Marburg virus is phosphorylated. J Gen Virol 75 ( Pt 4), 809-818. [PubMed]

Becker, S., Rinne, C., Hofsäß, U., Klenk, H.-D. & Mühlberger, E. (1998). Interactions of Marburg virus nucleocapsid proteins. Virology 249, 406-417. [PubMed]

Beniac, D. R. & Booth, T. F. (2017). Structure of the Ebola virus glycoprotein spike within the virion envelope at 11Å resolution. Sci Rep 7, 46374. [PubMed]

Beniac, D. R., Melito, P. L., Devarennes, S. L., Hiebert, S. L., Rabb, M. J., Lamboo, L. L., Jones, S. M. & Booth, T. F. (2012). The organisation of Ebola virus reveals a capacity for extensive, modular polyploidy. PLoS One 7, e29608. [PubMed]

Bhattacharyya, S., Hope, T. J. & Young, J. A. T. (2011). Differential requirements for clathrin endocytic pathway components in cellular entry by Ebola and Marburg glycoprotein pseudovirions. Virology 419, 1-9. [PubMed]

Biedenkopf, N., Hartlieb, B., Hoenen, T. & Becker, S. (2013). Phosphorylation of Ebola virus VP30 influences the composition of the viral nucleocapsid complex: impact on viral transcription and replication. J Biol Chem 288, 11165-11174. [PubMed]

Biedenkopf, N., Lier, C. & Becker, S. (2016a). Dynamic Phosphorylation of VP30 Is Essential for Ebola Virus Life Cycle. J Virol 90, 4914-4925. [PubMed]

Biedenkopf, N., Schlereth, J., Grünweller, A., Becker, S. & Hartmann, R. K. (2016b). RNA binding of Ebola virus VP30 is essential for activating viral transcription. J Virol 90, 7481-7496. [PubMed]

Boehmann, Y., Enterlein, S., Randolf, A. & Mühlberger, E. (2005). A reconstituted replication and transcription system for Ebola virus Reston and comparison with Ebola virus Zaire. Virology 332, 406-417. [PubMed]

Bornholdt, Z. A., Noda, T., Abelson, D. M., Halfmann, P., Wood, M. R., Kawaoka, Y. & Saphire, E. O. (2013). Structural rearrangement of Ebola virus VP40 begets multiple functions in the virus life cycle. Cell 154, 763-774. [PubMed]

Bramble, M. S., Hoff, N., Gilchuk, P., Mukadi, P., Lu, K., Doshi, R. H., Steffen, I., Nicholson, B. P., Lipson, A., Vashist, N., Sinai, C., Spencer, D., Olinger, G., Wemakoy, E. O., Illunga, B. K., Pettitt, J., Logue, J., Marchand, J., Varughese, J., Bennett, R. S., Jahrling, P., Cavet, G., Serafini, T., Ollmann Saphire, E., Vilain, E., Muyembe-Tamfum, J. J., Hensely, L. E., Simmons, G., Crowe, J. E., Jr. & Rimoin, A. W. (2018). Pan-filovirus serum neutralizing antibodies in a subset of Congolese ebolavirus infection survivors. J Infect Dis 218, 1929-1936. [PubMed]

Brauburger, K., Deflubé, L. R. & Mühlberger, E. (2015). Filovirus transcription and replication. In Biology and pathogenesis of rhabdo- and filoviruses, pp. 515-555. Edited by A. K. Pattnaik & M. A. Whitt. Singapore: World Scientific Publishing.

Bray, M., Driscoll, J. & Huggins, J. W. (2000). Treatment of lethal Ebola virus infection in mice with a single dose of an S-adenosyl-L-homocysteine hydrolase inhibitor. Antiviral Res 45, 135-147. [PubMed]

Brinkmann, C., Nehlmeier, I., Walendy-Gnirß, K., Nehls, J., González Hernández, M., Hoffmann, M., Qiu, X., Takada, A., Schindler, M. & Pöhlmann, S. (2016). The tetherin antagonism of the Ebola virus glycoprotein requires an intact receptor-binding domain and can be blocked by GP1-specific antibodies. J Virol 90, 11075-11086. [PubMed]

Bruhn, J. F., Kirchdoerfer, R. N., Urata, S. M., Li, S., Tickle, I. J., Bricogne, G. & Saphire, E. O. (2017). Crystal structure of the Marburg virus VP35 oligomerization domain. J Virol 91, e01085-01016. [PubMed]

Bukreyev, A. A., Volchkov, V. E., Blinov, V. M., Dryga, S. A. & Netesov, S. V. (1995). The complete nucleotide sequence of the Popp (1967) strain of Marburg virus: a comparison with the Musoke (1980) strain. Arch Virol 140, 1589-1600. [PubMed]

Cárdenas, W. B., Loo, Y.-M., Gale, M., Jr., Hartman, A. L., Kimberlin, C. R., Martínez-Sobrido, L., Ollmann Saphire, E. & Basler, C. F. (2006). Ebola virus VP35 protein binds double-stranded RNA and inhibits alpha/beta interferon production induced by RIG-I signaling. J Virol 80, 5168-5178. [PubMed]

Carette, J. E., Raaben, M., Wong, A. C., Herbert, A. S., Obernosterer, G., Mulherkar, N., Kuehne, A. I., Kranzusch, P. J., Griffin, A. M., Ruthel, G., Dal Cin, P., Dye, J. M., Whelan, S. P., Chandran, K. & Brummelkamp, T. R. (2011). Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature 477, 340-343. [PubMed]

Chandran, K., Sullivan, N. J., Felbor, U., Whelan, S. P. & Cunningham, J. M. (2005). Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection. Science 308, 1643-1645. [PubMed]

Clifton, M. C., Bruhn, J. F., Atkins, K., Webb, T. L., Baydo, R. O., Raymond, A., Lorimer, D. D., Edwards, T. E., Myler, P. J. & Saphire, E. O. (2015). High-resolution crystal structure of dimeric VP40 from Sudan ebolavirus. J Infect Dis 212 Suppl 2, S167-171. [PubMed]

Collar, A. L., Clarke, E. C., Anaya, E., Merrill, D., Yarborough, S., Anthony, S. M., Kuhn, J. H., Merle, C., Theisen, M. & Bradfute, S. B. (2017). Comparison of N- and O-linked glycosylation patterns of ebolavirus glycoproteins. Virology 502, 39-47. [PubMed]

Côté, M., Misasi, J., Ren, T., Bruchez, A., Lee, K., Filone, C. M., Hensley, L., Li, Q., Ory, D., Chandran, K. & Cunningham, J. (2011). Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection. Nature 477, 344-348. [PubMed]

Cross, R. W., Mire, C. E., Agans, K. N., Borisevich, V., Fenton, K. A. & Geisbert, T. W. (2018). Marburg and Ravn viruses fail to cause disease in the domestic ferret (Mustela putorius furo). The Journal of infectious diseases 218, S448-S452. [PubMed]

Davey, R. A., Shtanko, O., Anantpadma, M., Sakurai, Y., Chandran, K. & Maury, W. (2017). Mechanisms of filovirus entry. Curr Top Microbiol Immunol 411, 323-352. [PubMed]

de La Vega, M.-A., Wong, G., Kobinger, G. P. & Qiu, X. (2015). The multiple roles of sGP in Ebola pathogenesis. Viral Immunol 28, 3-9. [PubMed]

Dessen, A., Volchkov, V., Dolnik, O., Klenk, H.-D. & Weissenhorn, W. (2000). Crystal structure of the matrix protein VP40 from Ebola virus. EMBO J 19, 4228-4236. [PubMed]

Dias, J. M., Kuehne, A. I., Abelson, D. M., Bale, S., Wong, A. C., Halfmann, P., Muhammad, M. A., Fusco, M. L., Zak, S. E., Kang, E., Kawaoka, Y., Chandran, K., Dye, J. M. & Saphire, E. O. (2011). A shared structural solution for neutralizing ebolaviruses. Nat Struct Mol Biol 18, 1424-1427. [PubMed]

Dolnik, O., Stevermann, L., Kolesnikova, L. & Becker, S. (2015). Marburg virus inclusions: A virus-induced microcompartment and interface to multivesicular bodies and the late endosomal compartment. Eur J Cell Biol 94, 323-331. [PubMed]

Dolnik, O., Volchkova, V., Garten, W., Carbonnelle, C., Becker, S., Kahnt, J., Ströher, U., Klenk, H.-D. & Volchkov, V. (2004). Ectodomain shedding of the glycoprotein GP of Ebola virus. EMBO J 23, 2175-2184. [PubMed]

Ebihara, H., Takada, A., Kobasa, D., Jones, S., Neumann, G., Theriault, S., Bray, M., Feldmann, H. & Kawaoka, Y. (2006). Molecular determinants of Ebola virus virulence in mice. PLoS Pathog 2, e73. [PubMed]

Edwards, M. R. & Basler, C. F. (2015). Marburg virus VP24 protein relieves suppression of the NF-κB pathway through interaction with Kelch-like ECH-associated protein 1. J Infect Dis 212 Suppl 2, S154-159. [PubMed]

Edwards, M. R., Johnson, B., Mire, C. E., Xu, W., Shabman, R. S., Speller, L. N., Leung, D. W., Geisbert, T. W., Amarasinghe, G. K. & Basler, C. F. (2014). The Marburg virus VP24 protein interacts with Keap1 to activate the cytoprotective antioxidant response pathway. Cell Rep 6, 1017-1025. [PubMed]

Edwards, M. R., Liu, G., Mire, C. E., Sureshchandra, S., Luthra, P., Yen, B., Shabman, R. S., Leung, D. W., Messaoudi, I., Geisbert, T. W., Amarasinghe, G. K. & Basler, C. F. (2016). Differential regulation of interferon responses by Ebola and Marburg virus VP35 proteins. Cell Rep 14, 1632-1640. [PubMed]

Elliott, L. H., Kiley, M. P. & McCormick, J. B. (1985). Descriptive analysis of Ebola virus proteins. Virology 147, 169-176. [PubMed]

Ellis, D. S., Stamford, S., Lloyd, G., Bowen, E. T. W., Platt, G. S., Way, H. & Simpson, D. I. H. (1979a). Ebola and Marburg viruses: I. Some ultrastructural differences between strains when grown in Vero cells. J Med Virol 4, 201-211. [PubMed]

Ellis, D. S., Stamford, S., Tvoey, D. G., Lloyd, G., Bowen, E. T. W., Platt, G. S., Way, H. & Simpson, D. I. H. (1979b). Ebola and Marburg viruses: II. Thier development within Vero cells and the extra-cellular formation of branched and torus forms. J Med Virol 4, 213-225. [PubMed]

Enterlein, S., Volchkov, V., Weik, M., Kolesnikova, L., Volchkova, V., Klenk, H.-D. & Mühlberger, E. (2006). Rescue of recombinant Marburg virus from cDNA is dependent on nucleocapsid protein VP30. J Virol 80, 1038-1043. [PubMed]

Falzarano, D., Krokhin, O., Van Domselaar, G., Wolf, K., Seebach, J., Schnittler, H.-J. & Feldmann, H. (2007). Ebola sGP—the first viral glycoprotein shown to be C-mannosylated. Virology 368, 83-90. [PubMed]

Falzarano, D., Krokhin, O., Wahl-Jensen, V., Seebach, J., Wolf, K., Schnittler, H.-J. & Feldmann, H. (2006). Structure-function analysis of the soluble glycoprotein, sGP, of Ebola virus. Chembiochem 7, 1605-1611. [PubMed]

Feagins, A. R. & Basler, C. F. (2015). Lloviu virus VP24 and VP35 proteins function as innate immune antagonists in human and bat cells. Virology 485, 145-152. [PubMed]

Feizpour, A., Yu, X., Akiyama, H., Miller, C. M., Edmans, E., Gummuluru, S. & Reinhard, B. M. (2015). Quantifying lipid contents in enveloped virus particles with plasmonic nanoparticles. Small 11, 1592-1602. [PubMed]

Feldmann, H., Mühlberger, E., Randolf, A., Will, C., Kiley, M. P., Sanchez, A. & Klenk, H.-D. (1992). Marburg virus, a filovirus: messenger RNAs, gene order, and regulatory elements of the replication cycle. Virus Res 24, 1-19. [PubMed]

Feldmann, H., Will, C., Schikore, M., Slenczka, W. & Klenk, H.-D. (1991). Glycosylation and oligomerization of the spike protein of Marburg virus. Virology 182, 353-356. [PubMed]

Ferron, F., Longhi, S., Henrissat, B. & Canard, B. (2002). Viral RNA-polymerases - a predicted 2'-O-ribose methyltransferase domain shared by all Mononegavirales. Trends Biochem Sci 27, 222-224. [PubMed]

Flyak, A. I., Ilinykh, P. A., Murin, C. D., Garron, T., Shen, X., Fusco, M. L., Hashiguchi, T., Bornholdt, Z. A., Slaughter, J. C., Sapparapu, G., Klages, C., Ksiazek, T. G., Ward, A. B., Saphire, E. O., Bukreyev, A. & Crowe, J. E., Jr. (2015). Mechanism of human antibody-mediated neutralization of Marburg virus. Cell 160, 893-903. [PubMed]

Flyak, A. I., Kuzmina, N., Murin, C. D., Bryan, C., Davidson, E., Gilchuk, P., Gulka, C. P., Ilinykh, P. A., Shen, X., Huang, K., Ramanathan, P., Turner, H., Fusco, M. L., Lampley, R., Kose, N., King, H., Sapparapu, G., Doranz, B. J., Ksiazek, T. G., Wright, D. W., Saphire, E. O., Ward, A. B., Bukreyev, A. & Crowe, J. E., Jr. (2018). Broadly neutralizing antibodies from human survivors target a conserved site in the Ebola virus glycoprotein HR2-MPER region. Nat Microbiol 3, 670-677. [PubMed]

Froude, J. W., Pelat, T., Miethe, S., Zak, S. E., Wec, A. Z., Chandran, K., Brannan, J. M., Bakken, R. R., Hust, M., Thullier, P. & Dye, J. M. (2017). Generation and characterization of protective antibodies to Marburg virus. MAbs 9, 696-703. [PubMed]

Funke, C., Becker, S., Dartsch, H., Klenk, H.-D. & Mühlberger, E. (1995). Acylation of the Marburg virus glycoprotein. Virology 208, 289-297. [PubMed]

Geisbert, T. W. & Jahrling, P. B. (1995). Differentiation of filoviruses by electron microscopy. Virus Res 39, 129-150. [PubMed]

Geyer, H., Will, C., Feldmann, H., Klenk, H.-D. & Geyer, R. (1992). Carbohydrate structure of Marburg virus glycoprotein. Glycobiology 2, 299-312. [PubMed]

Goldstein, T., Anthony, S. J., Gbakima, A., Bird, B. H., Bangura, J., Tremeau-Bravard, A., Belaganahalli, M. N., Wells, H. L., Dhanota, J. K., Liang, E., Grodus, M., Jangra, R. K., DeJesus, V. A., Lasso, G., Smith, B. R., Jambai, A., Kamara, B. O., Kamara, S., Bangura, W., Monagin, C., Shapira, S., Johnson, C. K., Saylors, K., Rubin, E. M., Chandran, K., Lipkin, W. I. & Mazet, J. A. K. (2018). The discovery of Bombali virus adds further support for bats as hosts of ebolaviruses. Nat Microbiol 3, 1084-1089. [PubMed]

Groseth, A., Charton, J. E., Sauerborn, M., Feldmann, F., Jones, S. M., Hoenen, T. & Feldmann, H. (2009). The Ebola virus ribonucleoprotein complex: a novel VP30-L interaction identified. Virus Res 140, 8-14. [PubMed]

Haasnoot, J., de Vries, W., Geutjes, E.-J., Prins, M., de Haan, P. & Berkhout, B. (2007). The Ebola virus VP35 protein is a suppressor of RNA silencing. PLoS Pathog 3, e86. [PubMed]

Halfmann, P., Neumann, G. & Kawaoka, Y. (2011). The Ebolavirus VP24 protein blocks phosphorylation of p38 mitogen-activated protein kinase. J Infect Dis 204 Suppl 3, S953-956. [PubMed]

Han, Z., Boshra, H., Sunyer, J. O., Zwiers, S. H., Paragas, J. & Harty, R. N. (2003). Biochemical and functional characterization of the Ebola virus VP24 protein: implications for a role in virus assembly and budding. J Virol 77, 1793-1800. [PubMed]

Harty, R. N., Brown, M. E., Wang, G., Huibregtse, J. & Hayes, F. P. (2000). A PPxY motif within the VP40 protein of Ebola virus interacts physically and functionally with a ubiquitin ligase: implications for filovirus budding. Proc Natl Acad Sci U S A 97, 13871-13876. [PubMed]

Hashiguchi, T., Fusco, M. L., Bornholdt, Z. A., Lee, J. E., Flyak, A. I., Matsuoka, R., Kohda, D., Yanagi, Y., Hammel, M., Crowe, J. E., Jr. & Saphire, E. O. (2015). Structural basis for Marburg virus neutralization by a cross-reactive human antibody. Cell 160, 904-912. [PubMed]

He, B., Feng, Y., Zhang, H., Xu, L., Yang, W., Zhang, Y., Li, X. & Tu, C. (2015). Filovirus RNA in fruit bats, China. Emerg Infect Dis 21, 1675-1677. [PubMed]

He, J., Melnik, L. I., Komin, A., Wiedman, G., Fuselier, T., Morris, C. F., Starr, C. G., Searson, P. C., Gallaher, W. R., Hristova, K., Garry, R. F. & Wimley, W. C. (2017). Ebola virus delta peptide is a viroporin. J Virol 91, e00438-00417. [PubMed]

Henry, R. (2015). Ebola [ebʹo-lə" target="ictvref">PubMed]. Emerg Infect Dis 21, 1905. [PubMed]

Hoenen, T., Biedenkopf, N., Zielecki, F., Jung, S., Groseth, A., Feldmann, H. & Becker, S. (2010). Oligomerization of Ebola virus VP40 is essential for particle morphogenesis and regulation of viral transcription. J Virol 84, 7053-7063. [PubMed]

Hoenen, T., Groseth, A., Kolesnikova, L., Theriault, S., Ebihara, H., Hartlieb, B., Bamberg, S., Feldmann, H., Ströher, U. & Becker, S. (2006). Infection of naive target cells with virus-like particles: implications for the function of Ebola virus VP24. J Virol 80, 7260-7264. [PubMed]

Hoenen, T., Shabman, R. S., Groseth, A., Herwig, A., Weber, M., Schudt, G., Dolnik, O., Basler, C. F., Becker, S. & Feldmann, H. (2012). Inclusion bodies are a site of ebolavirus replication. J Virol 86, 11779-11788. [PubMed]

Huang, Y., Xu, L., Sun, Y. & Nabel, G. J. (2002). The assembly of Ebola virus nucleocapsid requires virion-associated proteins 35 and 24 and posttranslational modification of nucleoprotein. Mol Cell 10, 307-316. [PubMed]

Hume, A. & Mühlberger, E. (2018). Marburg virus viral protein 35 inhibits protein kinase R activation in a cell type-specific manner. The Journal of infectious diseases 218, S403-S408. [PubMed]

Ikegami, T., Calaor, A. B., Miranda, M. E., Niikura, M., Saijo, M., Kurane, I., Yoshikawa, Y. & Morikawa, S. (2001). Genome structure of Ebola virus subtype Reston: differences among Ebola subtypes. Brief report. Arch Virol 146, 2021-2027. [PubMed]

Ito, H., Watanabe, S., Takada, A. & Kawaoka, Y. (2001). Ebola virus glycoprotein: proteolytic processing, acylation, cell tropism, and detection of neutralizing antibodies. J Virol 75, 1576-1580. [PubMed]

Jeffers, S. A., Sanders, D. A. & Sanchez, A. (2002). Covalent modifications of the Ebola virus glycoprotein. J Virol 76, 12463-12472. [PubMed]

John, S. P., Wang, T., Steffen, S., Longhi, S., Schmaljohn, C. S. & Jonsson, C. B. (2007). Ebola virus VP30 is an RNA binding protein. J Virol 81, 8967-8976. [PubMed]

Johnson, B., Li, J., Adhikari, J., Edwards, M. R., Zhang, H., Schwarz, T., Leung, D. W., Basler, C. F., Gross, M. L. & Amarasinghe, G. K. (2016). Dimerization controls Marburg virus VP24-dependent modulation of host antioxidative stress responses. J Mol Biol 428, 3483-3494. [PubMed]

Jouvenet, N., Neil, S. J. D., Zhadina, M., Zang, T., Kratovac, Z., Lee, Y., McNatt, M., Hatziioannou, T. & Bieniasz, P. D. (2009). Broad-spectrum inhibition of retroviral and filoviral particle release by tetherin. J Virol 83, 1837-1844. [PubMed]

Kaletsky, R. L., Francica, J. R., Agrawal-Gamse, C. & Bates, P. (2009). Tetherin-mediated restriction of filovirus budding is antagonized by the Ebola glycoprotein. Proc Natl Acad Sci U S A 106, 2886-2891. [PubMed]

Kemenesi, G., Kurucz, K., Dallos, B., Zana, B., Földes, F., Boldogh, S., Görföl, T., Carroll, M. W. & Jakab, F. (2018). Re-emergence of Lloviu virus in Miniopterus schreibersii bats, Hungary, 2016. Emerg Microbes Infect 7, 66. [PubMed]

Kiley, M. P., Cox, N. J., Elliott, L. H., Sanchez, A., DeFries, R., Buchmeier, M. J., Richman, D. D. & McCormick, J. B. (1988). Physicochemical properties of Marburg virus: evidence for three distinct virus strains and their relationship to Ebola virus. J Gen Virol 69 ( Pt 8), 1957-1967. [PubMed]

Kiley, M. P., Regnery, R. L. & Johnson, K. M. (1980). Ebola virus: identification of virion structural proteins. J Gen Virol 49, 333-341. [PubMed]

Kimberlin, C. R., Bornholdt, Z. A., Li, S., Woods, V. L., Jr., MacRae, I. J. & Saphire, E. O. (2010). Ebolavirus VP35 uses a bimodal strategy to bind dsRNA for innate immune suppression. Proc Natl Acad Sci U S A 107, 314-319. [PubMed]

King, L. B., Fusco, M. L., Flyak, A. I., Ilinykh, P. A., Huang, K., Gunn, B., Kirchdoerfer, R. N., Hastie, K. M., Sangha, A. K., Meiler, J., Alter, G., Bukreyev, A., Crowe, J. E., Jr. & Saphire, E. O. (2018). The marburgvirus-neutralizing human monoclonal antibody MR191 targets a conserved site to block virus receptor binding. Cell Host Microbe 23, 101-109 e104. [PubMed]

Kirchdoerfer, R. N., Abelson, D. M., Li, S., Wood, M. R. & Saphire, E. O. (2015). Assembly of the Ebola virus nucleoprotein from a chaperoned VP35 complex. Cell Rep 12, 140-149. [PubMed]

Kirchdoerfer, R. N., Wasserman, H., Amarasinghe, G. K. & Saphire, E. O. (2017). Filovirus structural biology: The molecules in the machine. Curr Top Microbiol Immunol 411, 381-417. [PubMed]

Koehler, A., Kolesnikova, L. & Becker, S. (2016a). An active site mutation increases the polymerase activity of the guinea pig-lethal Marburg virus. J Gen Virol 97, 2494-2500. [PubMed]

Koehler, A., Kolesnikova, L., Welzel, U., Schudt, G., Herwig, A. & Becker, S. (2016b). A single amino acid change in the Marburg virus matrix protein VP40 provides a replicative advantage in a species-specific manner. J Virol 90, 1444-1454. [PubMed]

Koehler, A., Pfeiffer, S., Kolesnikova, L. & Becker, S. (2018). Analysis of the multifunctionality of Marburg virus VP40. J Gen Virol 99, 1614-1620. [PubMed]

Kolesnikova, L., Bamberg, S., Berghöfer, B. & Becker, S. (2004a). The matrix protein of Marburg virus is transported to the plasma membrane along cellular membranes: exploiting the retrograde late endosomal pathway. J Virol 78, 2382-2393. [PubMed]

Kolesnikova, L., Berghöfer, B., Bamberg, S. & Becker, S. (2004b). Multivesicular bodies as a platform for formation of the Marburg virus envelope. J Virol 78, 12277-12287. [PubMed]

Kolesnikova, L., Bugany, H., Klenk, H.-D. & Becker, S. (2002). VP40, the matrix protein of Marburg virus, is associated with membranes of the late endosomal compartment. J Virol 76, 1825-1838. [PubMed]

Kolesnikova, L., Mittler, E., Schudt, G., Shams-Eldin, H. & Becker, S. (2012). Phosphorylation of Marburg virus matrix protein VP40 triggers assembly of nucleocapsids with the viral envelope at the plasma membrane. Cell Microbiol 14, 182-197. [PubMed]

Kolesnikova, L., Mühlberger, E., Ryabchikova, E. & Becker, S. (2000). Ultrastructural organization of recombinant Marburg virus nucleoprotein: comparison with Marburg virus inclusions. J Virol 74, 3899-3904. [PubMed]

Kolesnikova, L., Nanbo, A., Becker, S. & Kawaoka, Y. (2017). Inside the cell: assembly of filoviruses. Curr Top Microbiol Immunol 411, 353-380. [PubMed]

Kolesnikova, L., Ryabchikova, E., Shestopalov, A. & Becker, S. (2007). Basolateral budding of Marburg virus: VP40 retargets viral glycoprotein GP to the basolateral surface. J Infect Dis 196 Suppl 2, S232-236. [PubMed]

Kuhn, J. H. (2008). Filoviruses. A compendium of 40 years of epidemiological, clinical, and laboratory studies. Archives of Virology Supplementum, vol. 20. Vienna, Austria: SpringerWienNewYork.

Kuhn, J. H. (2018). Ebolavirus and Marburgvirus Infections. In Harrison's principles of internal medicine, 20th edn, pp. 1509-1515. Edited by J. L. Jameson, A. S. Fauci, D. L. Kasper, S. L. Hauser, D. L. Longo & J. Loscalzo. Columbus, USA: McGraw-Hill Education.

Lee, J. E., Fusco, M. L., Hessell, A. J., Oswald, W. B., Burton, D. R. & Saphire, E. O. (2008). Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature 454, 177-182. [PubMed]

Lee, M. S., Lebeda, F. J. & Olson, M. A. (2009). Fold prediction of VP24 protein of Ebola and Marburg viruses using de novo fragment assembly. J Struct Biol 167, 136-144. [PubMed]

Leung, D. W., Prins, K. C., Borek, D. M., Farahbakhsh, M., Tufariello, J. M., Ramanan, P., Nix, J. C., Helgeson, L. A., Otwinowski, Z., Honzatko, R. B., Basler, C. F. & Amarasinghe, G. K. (2010). Structural basis for dsRNA recognition and interferon antagonism by Ebola VP35. Nat Struct Mol Biol 17, 165-172. [PubMed]

Licata, J. M., Simpson-Holley, M., Wright, N. T., Han, Z., Paragas, J. & Harty, R. N. (2003). Overlapping motifs (PTAP and PPEY) within the Ebola virus VP40 protein function independently as late budding domains: involvement of host proteins TSG101 and VPS-4. J Virol 77, 1812-1819. [PubMed]

Liu, B., Dong, S., Li, G., Wang, W., Liu, X., Wang, Y., Yang, C., Rao, Z. & Guo, Y. (2017). Structural insight into nucleoprotein conformation change chaperoned by VP35 peptide in Marburg virus. J Virol 91, e00825-00817. [PubMed]

Lötfering, B., Mühlberger, E., Tamura, T., Klenk, H.-D. & Becker, S. (1999). The nucleoprotein of Marburg virus is target for multiple cellular kinases. Virology 255, 50-62. [PubMed]

Malashkevich, V. N., Schneider, B. J., McNally, M. L., Milhollen, M. A., Pang, J. X. & Kim, P. S. (1999). Core structure of the envelope glycoprotein GP2 from Ebola virus at 1.9-Å resolution. Proc Natl Acad Sci U S A 96, 2662-2667. [PubMed]

Manhart, W. A., Pacheco, J. R., Hume, A. J., Cressey, T. N., Deflubé, L. R. & Mühlberger, E. (2018). A chimeric Lloviu virus minigenome system reveals that the bat-derived filovirus replicates more similarly to ebolaviruses than marburgviruses. Cell Rep 24, 2573-2580 e2574. [PubMed]

Marsh, G. A., Haining, J., Robinson, R., Foord, A., Yamada, M., Barr, J. A., Payne, J., White, J., Yu, M., Bingham, J., Rollin, P. E., Nichol, S. T., Wang, L.-F. & Middleton, D. (2011). Ebola Reston virus infection of pigs: clinical significance and transmission potential. J Infect Dis 204 Suppl 3, S804-809. [PubMed]

Maruyama, J., Miyamoto, H., Kajihara, M., Ogawa, H., Maeda, K., Sakoda, Y., Yoshida, R. & Takada, A. (2014). Characterization of the envelope glycoprotein of a novel filovirus, Lloviu virus. J Virol 88, 99-109. [PubMed]

Marzi, A., Haddock, E., Kajihara, M., Feldmann, H. & Takada, A. (2018). Monoclonal antibody cocktail protects hamsters from lethal Marburg virus infection. The Journal of infectious diseases 218, S662-S665. [PubMed]

Mateo, M., Carbonnelle, C., Reynard, O., Kolesnikova, L., Nemirov, K., Page, A., Volchkova, V. A. & Volchkov, V. E. (2011). VP24 is a molecular determinant of Ebola virus virulence in guinea pigs. J Infect Dis 204 Suppl 3, S1011-1020. [PubMed]

Mehedi, M., Falzarano, D., Seebach, J., Hu, X., Carpenter, M. S., Schnittler, H.-J. & Feldmann, H. (2011). A new Ebola virus nonstructural glycoprotein expressed through RNA editing. J Virol 85, 5406-5414. [PubMed]

Mire, C. E., Geisbert, J. B., Borisevich, V., Fenton, K. A., Agans, K. N., Flyak, A. I., Deer, D. J., Steinkellner, H., Bohorov, O., Bohorova, N., Goodman, C., Hiatt, A., Kim, D. H., Pauly, M. H., Velasco, J., Whaley, K. J., Crowe, J. E., Jr., Zeitlin, L. & Geisbert, T. W. (2017). Therapeutic treatment of Marburg and Ravn virus infection in nonhuman primates with a human monoclonal antibody. Sci Transl Med 9. [PubMed]

Misasi, J., Chandran, K., Yang, J.-Y., Considine, B., Filone, C. M., Côté, M., Sullivan, N., Fabozzi, G., Hensley, L. & Cunningham, J. (2012). Filoviruses require endosomal cysteine proteases for entry but exhibit distinct protease preferences. J Virol 86, 3284-3292. [PubMed]

Modrof, J., Becker, S. & Mühlberger, E. (2003). Ebola virus transcription activator VP30 is a zinc-binding protein. J Virol 77, 3334-3338. [PubMed]

Modrof, J., Möritz, C., Kolesnikova, L., Konakova, T., Hartlieb, B., Randolf, A., Mühlberger, E. & Becker, S. (2001). Phosphorylation of Marburg virus VP30 at serines 40 and 42 is critical for its interaction with NP inclusions. Virology 287, 171-182. [PubMed]

Modrof, J., Mühlberger, E., Klenk, H.-D. & Becker, S. (2002). Phosphorylation of VP30 impairs Ebola virus transcription. J Biol Chem 277, 33099-33104. [PubMed]

Möller, P., Pariente, N., Klenk, H.-D. & Becker, S. (2005). Homo-oligomerization of Marburgvirus VP35 homo-oligomerization of marburgvirus VP35 is essential for its

function in replication and transcription. J Virol 79, 14876-14886. [PubMed]

Mühlberger, E., Lötfering, B., Klenk, H.-D. & Becker, S. (1998). Three of the four nucleocapsid proteins of Marburg virus, NP, VP35, and L, are sufficient to mediate replication and transcription of Marburg virus-specific monocistronic minigenomes. J Virol 72, 8756-8764. [PubMed]

Mühlberger, E., Sanchez, A., Randolf, A., Will, C., Kiley, M. P., Klenk, H.-D. & Feldmann, H. (1992). The nucleotide sequence of the L gene of Marburg virus, a filovirus: homologies with paramyxoviruses and rhabdoviruses. Virology 187, 534-547. [PubMed]

Mühlberger, E., Weik, M., Volchov, V. E., Klenk, H.-D. & Becker, S. (1999). Comparison of the transcription and replication strategies of Marburg virus and Ebola virus by using artificial replication systems. J Virol 73, 2333-2342. [PubMed]

Nanbo, A., Imai, M., Watanabe, S., Noda, T., Takahashi, K., Neumann, G., Halfmann, P. & Kawaoka, Y. (2010). Ebolavirus is internalized into host cells via macropinocytosis in a viral glycoprotein-dependent manner. PLoS Pathog 6, e1001121. [PubMed]

Negredo, A., Palacios, G., Vázquez-Morón, S., González, F., Dopazo, H., Molero, F., Juste, J., Quetglas, J., Savji, N., de la Cruz Martínez, M., Herrera, J. E., Pizarro, M., Hutchison, S. K., Echevarría, J. E., Lipkin, W. I. & Tenorio, A. (2011). Discovery of an ebolavirus-like filovirus in Europe. PLoS Pathog 7, e1002304. [PubMed]

Nelson, E. V., Schmidt, K. M., Deflubé, L. R., Doğanay, S., Banadyga, L., Olejnik, J., Hume, A. J., Ryabchikova, E., Ebihara, H., Kedersha, N., Ha, T. & Mühlberger, E. (2016). Ebola virus does not induce stress granule formation during infection and sequesters stress granule proteins within viral inclusions. J Virol 90, 7268-7284. [PubMed]

Ng, M., Ndungo, E., Jangra, R. K., Cai, Y., Postnikova, E., Radoshitzky, S. R., Dye, J. M., Ramírez de Arellano, E., Negredo, A., Palacios, G., Kuhn, J. H. & Chandran, K. (2014). Cell entry by a novel European filovirus requires host endosomal cysteine proteases and Niemann-Pick C1. Virology 468-470, 637-646. [PubMed]

Noda, T., Sagara, H., Suzuki, E., Takada, A., Kida, H. & Kawaoka, Y. (2002). Ebola virus VP40 drives the formation of virus-like filamentous particles along with GP. J Virol 76, 4855-4865. [PubMed]

Ortín, J. & Martín-Benito, J. (2015). The RNA synthesis machinery of negative-stranded RNA viruses. Virology 479-480, 532-544. [PubMed]

Page, A., Volchkova, V. A., Reid, S. P., Mateo, M., Bagnaud-Baule, A., Nemirov, K., Shurtleff, A. C., Lawrence, P., Reynard, O., Ottmann, M., Lotteau, V., Biswal, S. S., Thimmulappa, R. K., Bavari, S. & Volchkov, V. E. (2014). Marburgvirus hijacks Nrf2-dependent pathway by targeting Nrf2-negative regulator Keap1. Cell Rep 6, 1026-1036. [PubMed]

Panchal, R. G., Ruthel, G., Kenny, T. A., Kallstrom, G. H., Lane, D., Badie, S. S., Li, L., Bavari, S. & Aman, M. J. (2003). In vivo oligomerization and raft localization of Ebola virus protein VP40 during vesicular budding. Proc Natl Acad Sci U S A 100, 15936-15941. [PubMed]

Pavadai, E., Gerstman, B. S. & Chapagain, P. P. (2018). A cylindrical assembly model and dynamics of the Ebola virus VP40 structural matrix. Sci Rep 8, 9776. [PubMed]

Pawęska, J. T., Jansen van Vuren, P., Kemp, A., Storm, N., Grobbelaar, A. A., Wiley, M. R., Palacios, G. & Markotter, W. (2018). Marburg virus infection in Egyptian rousette bats, South Africa, 2013-2014. Emerg Infect Dis 24, 1134-1137. [PubMed]

Peyrol, J., Thizon, C., Gaillard, J.-C., Marchetti, C., Armengaud, J. & Rollin-Genetet, F. (2013). Multiple phosphorylable sites in the Zaire Ebolavirus nucleoprotein evidenced by high resolution tandem mass spectrometry. J Virol Methods 187, 159-165. [PubMed]

Price, M. N., Dehal, P. S. & Arkin, A. P. (2010). FastTree 2 - approximately maximum-likelihood trees for large alignments. PLoS One 5, e9490. [PubMed]

Radoshitzky, S. R., Warfield, K. L., Chi, X., Dong, L., Kota, K., Bradfute, S. B., Gearhart, J. D., Retterer, C., Kranzusch, P. J., Misasi, J. N., Hogenbirk, M. A., Wahl-Jensen, V., Volchkov, V. E., Cunningham, J. M., Jahrling, P. B., Aman, M. J., Bavari, S., Farzan, M. & Kuhn, J. H. (2011). Ebolavirus Δ-peptide immunoadhesins inhibit marburgvirus and ebolavirus cell entry. J Virol 85, 8502-8513. [PubMed]

Ramanan, P., Edwards, M. R., Shabman, R. S., Leung, D. W., Endlich-Frazier, A. C., Borek, D. M., Otwinowski, Z., Liu, G., Huh, J., Basler, C. F. & Amarasinghe, G. K. (2012). Structural basis for Marburg virus VP35-mediated immune evasion mechanisms. Proc Natl Acad Sci U S A 109, 20661-20666. [PubMed]

Regnery, R. L., Johnson, K. M. & Kiley, M. P. (1980). Virion nucleic acid of Ebola virus. J Virol 36, 465-469. [PubMed]

Reid, S. P., Cárdenas, W. B. & Basler, C. F. (2005). Homo-oligomerization facilitates the interferon-antagonist activity of the ebolavirus VP35 protein. Virology 341, 179-189. [PubMed]

Reid, S. P., Valmas, C., Martinez, O., Sanchez, F. M. & Basler, C. F. (2007). Ebola virus VP24 proteins inhibit the interaction of NPI-1 subfamily karyopherin α proteins with activated STAT1. J Virol 81, 13469-13477. [PubMed]

Ritchie, G., Harvey, D. J., Stroeher, U., Feldmann, F., Feldmann, H., Wahl-Jensen, V., Royle, L., Dwek, R. A. & Rudd, P. M. (2010). Identification of N-glycans from Ebola virus glycoproteins by matrix-assisted laser desorption/ionisation time-of-flight and negative ion electrospray tandem mass spectrometry. Rapid Commun Mass Spectrom 24, 571-585. [PubMed]

Ryabchikova, E. I. & Price, B. B. S. (2004). Ebola and Marburg viruses. A view of infection using electron microscopy. Columbus, USA: Battelle Press.

Saeed, M. F., Kolokoltsov, A. A., Albrecht, T. & Davey, R. A. (2010). Cellular entry of Ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes. PLoS Pathog 6, e1001110. [PubMed]

Sakuma, T., Noda, T., Urata, S., Kawaoka, Y. & Yasuda, J. (2009). Inhibition of Lassa and Marburg virus production by tetherin. J Virol 83, 2382-2385. [PubMed]

Sanchez, A. & Kiley, M. P. (1987). Identification and analysis of Ebola virus messenger RNA. Virology 157, 414-420. [PubMed]

Sanchez, A., Kiley, M. P., Holloway, B. P. & Auperin, D. D. (1993). Sequence analysis of the Ebola virus genome: organization, genetic elements, and comparison with the genome of Marburg virus. Virus Res 29, 215-240. [PubMed]

Sanchez, A., Kiley, M. P., Klenk, H.-D. & Feldmann, H. (1992). Sequence analysis of the Marburg virus nucleoprotein gene: comparison to Ebola virus and other non-segmented negative-strand RNA viruses. J Gen Virol 73, 347-357. [PubMed]

Sanchez, A. & Rollin, P. E. (2005). Complete genome sequence of an Ebola virus (Sudan species) responsible for a 2000 outbreak of human disease in Uganda. Virus Res 113, 16-25. [PubMed]

Sanchez, A., Trappier, S. G., Mahy, B. W. J., Peters, C. J. & Nichol, S. T. (1996). The virion glycoproteins of Ebola viruses are encoded in two reading frames and are expressed through transcriptional editing. Proc Natl Acad Sci U S A 93, 3602-3607. [PubMed]

Sangha, A. K., Dong, J., Williamson, L., Hashiguchi, T., Saphire, E. O., Crowe, J. E., Jr. & Meiler, J. (2017). Role of non-local interactions between CDR loops in binding affinity of MR78 antibody to Marburg virus glycoprotein. Structure 25, 1820-1828 e1822. [PubMed]

Saphire, E. O., Schendel, S. L., Fusco, M. L., Gangavarapu, K., Gunn, B. M., Wec, A. Z., Halfmann, P. J., Brannan, J. M., Herbert, A. S., Qiu, X., Wagh, K., He, S., Giorgi, E. E., Theiler, J., Pommert, K. B. J., Krause, T. B., Turner, H. L., Murin, C. D., Pallesen, J., Davidson, E., Ahmed, R., Aman, M. J., Bukreyev, A., Burton, D. R., Crowe, J. E., Jr., Davis, C. W., Georgiou, G., Krammer, F., Kyratsous, C. A., Lai, J. R., Nykiforuk, C., Pauly, M. H., Rijal, P., Takada, A., Townsend, A. R., Volchkov, V., Walker, L. M., Wang, C.-I., Zeitlin, L., Doranz, B. J., Ward, A. B., Korber, B., Kobinger, G. P., Andersen, K. G., Kawaoka, Y., Alter, G., Chandran, K., Dye, J. M. & Viral Hemorrhagic Fever Immunotherapeutic Consortium (2018). Systematic analysis of monoclonal antibodies against Ebola virus GP defines features that contribute to protection. Cell 174, 938-952 e913. [PubMed]

Schornberg, K., Matsuyama, S., Kabsch, K., Delos, S., Bouton, A. & White, J. (2006). Role of endosomal cathepsins in entry mediated by the Ebola virus glycoprotein. J Virol 80, 4174-4178. [PubMed]

Schwarz, T. M., Edwards, M. R., Diederichs, A., Alinger, J. B., Leung, D. W., Amarasinghe, G. K. & Basler, C. F. (2017). VP24-karyopherin alpha binding affinities differ between Ebolavirus species, influencing interferon inhibition and VP24 stability. J Virol 91, e01715-01716. [PubMed]

Shabman, R. S., Hoenen, T., Groseth, A., Jabado, O., Binning, J. M., Amarasinghe, G. K., Feldmann, H. & Basler, C. F. (2013). An upstream open reading frame modulates Ebola virus polymerase translation and virus replication. PLoS Pathog 9, e1003147. [PubMed]

Shi, M., Lin, X.-D., Chen, X., Tian, J.-H., Chen, L.-J., Li, K., Wang, W., Eden, J.-S., Shen, J.-J., Liu, L., Holmes, E. C. & Zhang, Y.-Z. (2018). The evolutionary history of vertebrate RNA viruses. Nature 556, 197-202. [PubMed]

Siegert, R., Shu, H.-L., Slenczka, W., Peters, D. & Müller, G. (1967). Zur Ätiologie einer unbekannten, von Affen ausgegangenen menschlichen Infektionskrankheit. Dtsch Med Wochenschr 92, 2341-2343. [PubMed]

Siragam, V., Wong, G. & Qiu, X.-G. (2018). Animal models for filovirus infections. Zool Res 39, 15-24. [PubMed]

St Claire, M. C., Ragland, D. R., Bollinger, L. & Jahrling, P. B. (2017). Animal models of ebolavirus infection. Comp Med 67, 253-262. [PubMed]

Su, Z., Wu, C., Shi, L., Luthra, P., Pintilie, G. D., Johnson, B., Porter, J. R., Ge, P., Chen, M., Liu, G., Frederick, T. E., Binning, J. M., Bowman, G. R., Zhou, Z. H., Basler, C. F., Gross, M. L., Leung, D. W., Chiu, W. & Amarasinghe, G. K. (2018). Electron cryo-microscopy structure of Ebola virus nucleoprotein reveals a mechanism for nucleocapsid-like assembly. Cell 172, 966-978 e912. [PubMed]

Sugita, Y., Matsunami, H., Kawaoka, Y., Noda, T. & Wolf, M. (2018). Cryo-EM structure of the Ebola virus nucleoprotein-RNA complex at 3.6 Å resolution. Nature 563, 137-140. [PubMed]

Takada, A., Robison, C., Goto, H., Sanchez, A., Murti, K. G., Whitt, M. A. & Kawaoka, Y. (1997). A system for functional analysis of Ebola virus glycoprotein. Proc Natl Acad Sci U S A 94, 14764-14769. [PubMed]

Tchesnokov, E. P., Raeisimakiani, P., Ngure, M., Marchant, D. & Gotte, M. (2018). Recombinant RNA-Dependent RNA Polymerase Complex of Ebola Virus. Sci Rep 8, 3970. [PubMed]

Tigabu, B., Ramanathan, P., Ivanov, A., Lin, X., Ilinykh, P. A., Parry, C. S., Freiberg, A. N., Nekhai, S. & Bukreyev, A. (2018). Phosphorylated VP30 of Marburg virus is a repressor of transcription. J Virol 92, e00426-00418. [PubMed]

Timmins, J., Schoehn, G., Ricard-Blum, S., Scianimanico, S., Vernet, T., Ruigrok, R. W. H. & Weissenhorn, W. (2003). Ebola virus matrix protein VP40 interaction with human cellular factors Tsg101 and Nedd4. J Mol Biol 326, 493-502. [PubMed]

Towner, J. S., Amman, B. R., Sealy, T. K., Carroll, S. A., Comer, J. A., Kemp, A., Swanepoel, R., Paddock, C. D., Balinandi, S., Khristova, M. L., Formenty, P. B. H., Albarino, C. G., Miller, D. M., Reed, Z. D., Kayiwa, J. T., Mills, J. N., Cannon, D. L., Greer, P. W., Byaruhanga, E., Farnon, E. C., Atimnedi, P., Okware, S., Katongole-Mbidde, E., Downing, R., Tappero, J. W., Zaki, S. R., Ksiazek, T. G., Nichol, S. T. & Rollin, P. E. (2009). Isolation of genetically diverse Marburg viruses from Egyptian fruit bats. PLoS Pathog 5, e1000536. [PubMed]

Towner, J. S., Sealy, T. K., Khristova, M. L., Albariño, C. G., Conlan, S., Reeder, S. A., Quan, P.-L., Lipkin, W. I., Downing, R., Tappero, J. W., Okware, S., Lutwama, J., Bakamutumaho, B., Kayiwa, J., Comer, J. A., Rollin, P. E., Ksiazek, T. G. & Nichol, S. T. (2008). Newly discovered ebola virus associated with hemorrhagic fever outbreak in Uganda. PLoS Pathog 4, e1000212. [PubMed]

Tran, E. E. H., Simmons, J. A., Bartesaghi, A., Shoemaker, C. J., Nelson, E., White, J. M. & Subramaniam, S. (2014). Spatial localization of the Ebola virus glycoprotein mucin-like domain determined by cryo-electron tomography. J Virol 88, 10958-10962. [PubMed]

Trunschke, M., Conrad, D., Enterlein, S., Olejnik, J., Brauburger, K. & Mühlberger, E. (2013). The L-VP35 and L-L interaction domains reside in the amino terminus of the Ebola virus L protein and are potential targets for antivirals. Virology 441, 135-145. [PubMed]

Urata, S., Noda, T., Kawaoka, Y., Morikawa, S., Yokosawa, H. & Yasuda, J. (2007). Interaction of Tsg101 with Marburg virus VP40 depends on the PPPY motif, but not the PT/SAP motif as in the case of Ebola virus, and Tsg101 plays a critical role in the budding of Marburg virus-like particles induced by VP40, NP, and GP. J Virol 81, 4895-4899. [PubMed]

Urata, S. & Yasuda, J. (2010). Regulation of Marburg virus (MARV) budding by Nedd4.1: a different WW domain of Nedd4.1 is critical for binding to MARV and Ebola virus VP40. J Gen Virol 91, 228-234. [PubMed]

Valmas, C. & Basler, C. F. (2011). Marburg virus VP40 antagonizes interferon signaling in a species-specific manner. J Virol 85, 4309-4317. [PubMed]

Valmas, C., Grosch, M. N., Schümann, M., Olejnik, J., Martinez, O., Best, S. M., Krähling, V., Basler, C. F. & Mühlberger, E. (2010). Marburg virus evades interferon responses by a mechanism distinct from ebola virus. PLoS Pathog 6, e1000721. [PubMed]

Volchkov, V. E., Becker, S., Volchkova, V. A., Ternovoj, V. A., Kotov, A. N., Netesov, S. V. & Klenk, H.-D. (1995). GP mRNA of Ebola virus is edited by the Ebola virus polymerase and by T7 and vaccinia virus polymerases. Virology 214, 421-430. [PubMed]

Volchkov, V. E., Feldmann, H., Volchkova, V. E. & Klenk, H.-D. (1998a). Processing of the Ebola virus glycoprotein by the proprotein convertase furin. Proc Natl Acad Sci U S A 95, 5762-5767. [PubMed]

Volchkov, V. E., Volchkova, V. A., Slenczka, W., Klenk, H.-D. & Feldmann, H. (1998b). Release of viral glycoproteins during Ebola virus infection. Virology 245, 110-119. [PubMed]

Volchkov, V. E., Volchkova, V. A., Ströher, U., Becker, S., Dolnik, O., Cieplik, M., Garten, W., Klenk, H.-D. & Feldmann, H. (2000). Proteolytic processing of Marburg virus glycoprotein. Virology 268, 1-6. [PubMed]

Volchkova, V. A., Feldmann, H., Klenk, H.-D. & Volchkov, V. E. (1998). The nonstructural small glycoprotein sGP of Ebola virus is secreted as an antiparallel-orientated homodimer. Virology 250, 408-414. [PubMed]

Volchkova, V. A., Klenk, H.-D. & Volchkov, V. E. (1999). Delta-peptide is the carboxy-terminal cleavage fragment of the nonstructural small glycoprotein sGP of Ebola virus. Virology 265, 164-171. [PubMed]

Wan, W., Kolesnikova, L., Clarke, M., Koehler, A., Noda, T., Becker, S. & Briggs, J. A. G. (2017). Structure and assembly of the Ebola virus nucleocapsid. Nature 551, 394-397. [PubMed]

Wang, H., Shi, Y., Song, J., Qi, J., Lu, G., Yan, J. & Gao, G. F. (2016). Ebola Viral Glycoprotein Bound to Its Endosomal Receptor Niemann-Pick C1. Cell 164, 258-268. [PubMed]

Watanabe, S., Noda, T., Halfmann, P., Jasenosky, L. & Kawaoka, Y. (2007). Ebola virus (EBOV) VP24 inhibits transcription and replication of the EBOV genome. J Infect Dis 196 Suppl 2, S284-290. [PubMed]

Watanabe, S., Noda, T. & Kawaoka, Y. (2006). Functional mapping of the nucleoprotein of Ebola virus. J Virol 80, 3743-3751. [PubMed]

Wec, A. Z., Herbert, A. S., Murin, C. D., Nyakatura, E. K., Abelson, D. M., Fels, J. M., He, S., James, R. M., de La Vega, M. A., Zhu, W., Bakken, R. R., Goodwin, E., Turner, H. L., Jangra, R. K., Zeitlin, L., Qiu, X., Lai, J. R., Walker, L. M., Ward, A. B., Dye, J. M., Chandran, K. & Bornholdt, Z. A. (2017). Antibodies from a human survivor define sites of vulnerability for broad protection against ebolaviruses. Cell 169, 878-890 e815. [PubMed]

Weik, M., Modrof, J., Klenk, H.-D., Becker, S. & Mühlberger, E. (2002). Ebola virus VP30-mediated transcription is regulated by RNA secondary structure formation. J Virol 76, 8532-8539. [PubMed]

Welsch, S., Kolesnikova, L., Krähling, V., Riches, J. D., Becker, S. & Briggs, J. A. G. (2010). Electron tomography reveals the steps in filovirus budding. PLoS Pathog 6, e1000875. [PubMed]

Wenigenrath, J., Kolesnikova, L., Hoenen, T., Mittler, E. & Becker, S. (2010). Establishment and application of an infectious virus-like particle system for Marburg virus. J Gen Virol 91, 1325-1334. [PubMed]

West, B. R., Moyer, C. L., King, L. B., Fusco, M. L., Milligan, J. C., Hui, S. & Saphire, E. O. (2018). Structural basis of pan-ebolavirus neutralization by a human antibody against a conserved, yet cryptic epitope. MBio 9, e01674-01618. [PubMed]

Will, C., Mühlberger, E., Linder, D., Slenczka, W., Klenk, H.-D. & Feldmann, H. (1993). Marburg virus gene 4 encodes the virion membrane protein, a type I transmembrane glycoprotein. J Virol 67, 1203-1210. [PubMed]

Wolf, Y. I., Kazlauskas, D., Iranzo, J., Lucía-Sanz, A., Kuhn, J. H., Krupovic, M., Dolja, V. V. & Koonin, E. V. (2018). Origins and evolution of the global RNA virome. MBio 9, e02329-02318. [PubMed]

Wong, G., Zhang, Z., He, S., de La Vega, M.-A., Tierney, K., Soule, G., Tran, K., Fernando, L. & Qiu, X. (2018). Marburg and Ravn virus infections do not cause observable disease in ferrets. The Journal of infectious diseases 218, S471-S474. [PubMed]

Xu, W., Edwards, M. R., Borek, D. M., Feagins, A. R., Mittal, A., Alinger, J. B., Berry, K. N., Yen, B., Hamilton, J., Brett, T. J., Pappu, R. V., Leung, D. W., Basler, C. F. & Amarasinghe, G. K. (2014). Ebola virus VP24 targets a unique NLS binding site on karyopherin alpha 5 to selectively compete with nuclear import of phosphorylated STAT1. Cell Host Microbe 16, 187-200. [PubMed]

Xu, W., Luthra, P., Wu, C., Batra, J., Leung, D. W., Basler, C. F. & Amarasinghe, G. K. (2017). Ebola virus VP30 and nucleoprotein interactions modulate viral RNA synthesis. Nat Commun 8, 15576. [PubMed]

Yang, X.-L., Tan, C. W., Anderson, D. E., Jiang, R.-D., Bei Li1, W. Z., Zhu, Y., Lim, X. F., Zhou, P., Liu, X.-L., Guan, W., Zhang, L., Li, S.-Y., Zhang, Y.-Z., Wang, L.-F. & Shi, Z.-L. (2019). Characterization of a filovirus (Měnglà virus) from Rousettus bats in China. Nat Microbiol

Yang, X.-L., Zhang, Y.-Z., Jiang, R.-D., Guo, H., Zhang, W., Li, B., Wang, N., Wang, L., Waruhiu, C., Zhou, J.-H., Li, S.-Y., Daszak, P., Wang, L.-F. & Shi, Z.-L. (2017). Genetically diverse filoviruses in Rousettus and Eonycteris spp. bats, China, 2009 and 2015. Emerg Infect Dis 23, 482-486. [PubMed]

Zhang, A. P. P., Bornholdt, Z. A., Abelson, D. M. & Saphire, E. O. (2014). Crystal structure of Marburg virus VP24. J Virol 88, 5859-5863. [PubMed]

Zhang, A. P. P., Bornholdt, Z. A., Liu, T., Abelson, D. M., Lee, D. E., Li, S., Woods, V. L., Jr. & Saphire, E. O. (2012). The Ebola virus interferon antagonist VP24 directly binds STAT1 and has a novel, pyramidal fold. PLoS Pathog 8, e1002550. [PubMed]

Zhu, T., Song, H., Peng, R., Shi, Y., Qi, J. & Gao, G. F. (2017). Crystal structure of the Marburg virus nucleoprotein core domain chaperoned by a VP35 peptide reveals a conserved drug target for filovirus. J Virol 91, e00996-00917. [PubMed]